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The excess molar volume (V'F) data of the 24 binary highly non-ideal mixtures containing
dicyclic ethers (593 data points) were correlated by the Peng—Robinson-Stryjek—Vera (PRSV)
cubic equation of state (CEOS) coupled with two different classes of mixing rules: (i) the
composition dependent van der Waals (vdW) mixing rule and (ii) the excess free energy mixing
rules (CEOS/GF) based on the approach of the Gupta—Rasmunssen—Fredenslund (GRF),
as well as the Twu—Coon—Bluck-Tilton (TCBT) mixing rule; both rules with the NRTL
equation as the G ¥ model. The results obtained by these models show that the type of applied
mixing rules, including the number and position of interaction parameters are of great
importance for a satisfactory correlation of V'E data. The GRF mixing rules gave mostly
satisfactory results for I'F correlation of the non-ideal binary systems available at one isotherm
of 298.15 K, while for the correlation in temperature range from 288.15 to 308.15 K the TCBT
model can be recommended.

Keywords: Excess molar volume; Cubic equation of state; Correlation, mixing rules

1. Introduction

Cubic equations of state (CEOS) models are important thermodynamic tools used for
the design of chemical processes and also for their further optimization. This part
represents a continuation of our previous research [1] related to the correlation of the
excess volume data of 21 binary non-electrolyte mixtures of monocyclic ethers with
n-alkanes, 1-alcohols, cyclic and aromatic compounds, employing van der Waals (vdW)
and Gupta—Rasmunssen—Fredenslund (GRF) as excess free energy mixing rules
(CEOS/GE) coupled with the Peng—Robinson-Stryjek—Vera (PRSV) equation of
state (PRSV CEOS). It was shown that in all cases, the GRF gave better results to those
reached by the vdW models. Here, we have tried to extend further applicability of the
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CEOS/GF, involving the Twu—Coon—Bluck—Tilton (TCBT) models [2] to the correla-
tion of excess molar volume of (VF) data of the binary non-ideal systems of diverse
structure and complexity, exhibiting very specific behavior. TCBT models were
employed since in our recent papers [3,4] was shown that correlation with that kind of
mixing rules led to exceptionally good results comparing to those obtained with the
vdW models. Also, we considered together the results reached by the TCBT models and
those achieved with models employed in our first paper (vdW1 and GRF). These
analyses were performed for excess volume correlation quality for 24 mixtures of the
dicyclic ethers with n-alkanes, 1-alcohols, and cyclohexane. The flexibility of the applied
mixing rules to represent V'E data was tested, since the selected mixtures include
non-ideal compounds, asymmetric shape of excess molar volume V" versus
composition (x;) curve with very small or large excess values, etc.

2. Analysis of the data base

In the first part of our investigation [1] the V' F data of different kinds of systems with
monoethers were correlated by the vdW and GRF models. This time, we decided to
extend our work to the mixtures of dicyclic ethers with alkanes, alcohols, and cyclic
organic compounds, since their V' are almost 3 times larger, comparing to noticed for
mixtures with monocyclic ethers [5-10], and generally, because the systems with diethers
exhibit higher non-ideal behavior. This observation can be explained bearing in mind
much stronger interactions present in pure diethers, which lead to much denser packing
of molecules present in these compounds. This specific intermolecular order is deeply
modified by adding of some other compound, causing a large positive excess molar
volume effect.

Table 1 presents the binary systems investigated, the number of experimental data
points and temperatures, as well as the source of the collected data.

All investigated systems were divided into two groups. The first group consists the
experimental data at 298.15 K, whereas the second one is constituted by the data sets
belonging to the temperature range from 288.15 to 308.15 K.

3. Cubic equation of state

As in the first part, the PRSV CEOS [16] was employed
_ RT a(T)

V—b V(V+b)+b(V—b)
where P and T denote pressure and temperature, respectively, and R is the gas constant.

For pure component i, the temperature dependent parameter a and parameter b
are given by the following equations

P

M

(]271j)2

ci

a(T) = 0.457235 [1+m(1- T, @)

RT
bi = 0.077796 =5, 3)

ci
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Table 1. Binary systems used for VF correlation.

System no. System No. of data points T (K) Reference
Dicyclic ether + alkane
1 1,4-dioxane (1) + heptane (2) 46 288.15, 298.15, 308.15 [11]
2 1.,4-dioxane (1) + octane (2) 46 288.15, 298.15, 308.15 [11]
3 1,4-dioxane (1) 4+ nonane (2) 41 288.15, 298.15, 308.15 [11]
4 1,4-dioxane (1) + decane (2) 41 288.15, 298.15, 308.15 [11]
5 1,3-dioxolane (1) + heptane (2) 42 288.15, 298.15, 308.15 [12]
6 1,3-dioxolane (1) + octane (2) 42 288.15, 298.15, 308.15 [12]
7 1,3-dioxolane (1) +nonane (2) 41 288.15, 298.15, 308.15 [12]
8 1,3-dioxolane (1) +decane (2) 46 288.15, 298.15, 308.15 [12]
Dicyclic ether + alcohol
9 1,4-dioxane (1) + butanol (2) 12 298.15 [13]
10 1,4-dioxane (1) + pentanol (2) 12 298.15 [13]
11 1,4-dioxane (1) + hexanol (2) 12 298.15 [13]
12 1,4-dioxane (1) 4+ heptanol (2) 24 298.15 [13]
13 1,4-dioxane (1) + octanol (2) 12 298.15 [13]
14 1,4-dioxane (1) 4 nonanol (2) 33 298.15 [13]
15 1,4-dioxane (1) + decanol (2) 12 298.15 [13]
16 1,3-dioxolane (1) + butanol (2) 12 298.15 [14]
17 1,3-dioxolane (1) + pentanol (2) 11 298.15 [14]
18 1,3-dioxolane (1) + hexanol (2) 12 298.15 [14]
19 1,3-dioxolane (1) + heptanol (2) 12 298.15 [14]
20 1,3-dioxolane (1) + octanol (2) 22 298.15 [14]
21 1,3-dioxolane (1) +nonanol (2) 17 298.15 [14]
22 1,3-dioxolane (1) + decanol (2) 19 298.15 [14]
Dicyclic ether + cyclohexane
23 1,4-dioxane (1) + cyclohexane (2) 13 298.15 [15]
24 1,3-dioxolane (1) + cyclohexane (2) 13 298.15 [15]
mi = koi + ki; (14 T°) (0.7 — Ty, “)
koi = 0.378893 + 1.4897153w; — 0.171384860? + 0.0196554&)?. ®)

In equations (2)—(5) subscripts ¢ and r denote critical and reduced values, respectively,
w is the acentric factor, and k); is the pure component adjustable parameter [17].

4. Mixing rules

In order to examine the effect of the number and position of binary interaction
parameters we used two different classes of mixing rules: (i) the composition dependent
vdW one-fluid models [18] and (ii) two types of CEOS/G F mixing rules — the general
form based on the approach proposed by Gupta et al. (GRF) [19] and the mixing rule
developed by Twu et al. (TCBT) [2].

4.1. vdW one-fluid mixing rules

For the parameters of mixture ¢ and b, two forms of the vdW one-fluid rules were
tested.
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The energy parameter @, can be expressed by the following equation

a = ZZX,‘de,’j. (6)
J

i
The cross interaction parameter a;, has the form
ajj = (a,-aj)o's(l — k,'j + Z,j(X,‘ — Xj)), (7)

where equation (7) assumes k;=k;; and [;;=—[;.

The covolumen parameter b can be defined in two ways; first, as a quadratic
composition dependent function

b = Zinij,-j, (8)
i

where the cross interaction parameter b is given by the equation

b; + b;
bz/:( ; ]>(1 — my), ©))

and second, as the linear composition dependence in the form

b= xbi. (10)

Binary interaction parameters k;, /;, and m; can be treated as the linear temperature
dependences by following equation:

kij=ci+al, lj=c+al, mj=cs+cl. (11)

4.2. Excess fiee energy mixing rules

In the present article we used the general approach introduced by Gupta et al. (GRF)
for VLE calculation since, as we illustrated in our first paper [1], it was successfully
applied to V' F calculation in a very wide region of temperatures. Beside the GRF
mixing rule we also used the TCBT mixing rule developed recently for VLE calculations
at no reference pressure conditions and based on the vdW reference fluid.

The basic equation of the GRF mixing rule relates the excess Helmholtz free energy
with the excess Gibbs energy [20]

GE A=A N
) = D xiln( )+ (12)
RT) cpos RT : v,)] T RT

1

where Ar is the residual Helmholtz energy, and V' and V; are the molar volumes of
mixture and of pure component i, respectively.
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The form of G&og for the PRSV equation is

(;E b bi V jﬂL/E
(37) oy = (1) # (1 52) = S ) + 57

PR V4 (1—~2)b _ Z G Vi+ (1 —2)b;
2V2bRT \V+(1+/2)b —~ "' 220, RT \V;+ (1 +/2)b;)
(13)

The GRF mixing rule is obtained by equating the excess Gibbs energy from equation
of state, equation (13) and the activity coefficient model

() er™ (7). “
RT/cros  \RT) g

model

The new, very attractive TCBT mixing rule can be presented as:
GE GFEW Viaw — 1\ [bvaw
v _ =1 vdW v
T~ Rr TET AW n[( V-1 )( b
_ 1 a_*ln Ve tw _a:’de In V\jde +w (15)
w—u|b* V*+u briw Viw T u
where Gfaw is calculated for the PRSV CEOS. Parameters a,qgw and b.gw are
determined by incorportating equations for k; and my as interaction parameters

of the vdW model.
The reduced parameters a*, b*, a4y, and b4, are obtained from the equations

a* = Pa/R*T?, b* = Pb/RT (16)

V*=V/b=z/b* is the reduced liquid volume at P and 7 of the mixture. The
compressibility factors z and z,qw are calculated from equation (1) expressed in the
z form.

Bearing in mind that V* does not have an explicit solution, an iterative technique was
required for the calculation. This mixing rule also involves the binary parameters
introduced by an activity coefficient G ¥ model. Using this approach, a complex but
very flexible TCBT mixing rule was established [21].

As an activity coefficient model for the G calculations the NRTL equation [22]
was chosen

GF Z X/G,,‘L',, (17)
Zk XkGri
For binary systems the following relations are valid

G =exp(—aiati2),  Go = exp(—a 1), (18)
712 = (g12 — 822)/RT, 7121 = (g21 — g11)/RT.

The NRTL model binary parameters g,» — g»> and g»; — g;; @ non-randomness param-
eter a1, (w2 =ay) are given by the following linear temperature dependent forms:

ap=c+acl, gn—gn=c+al, gi1—gin1=c+cT. (19)
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Table 2. Thermodynamic CEOS and CEOS/G * models used in the present work.

Model Equations

vdW1 (6)-9), (11); ca=¢6=0, ;=0

vdW1-1 (6)-9), (11); 1;=0

MvdW1 (6), (7), (10), (11); c2=c4=0

MvdW1-1 (6), (7), (10), (11)

GRF1 (12)-(14), (17)~(19); @1»=0.3; cxa=c=0
GRF2 (12)-(14), (17)-(19); cr=c4=cc=0
GRF3 (12)~(14), (17)~(19)

TCBT1 (6)-9), (15)—(19); a12=0.3; c4=¢c=0, [;=0
TCBT2 (6)-9). (15)(19), ca=ca=¢6=0, [;=0
TCBT3 (6)~9), (15+(19); 1;=0

All CEOS and CEOS/G® models obtained on the bases of the above mentioned
equations are summarized in table 2.

4.3. Representation of CEOS and CEOS|G"* models

The general equation for the excess volume calculation is given as

VE=V =Y xiV. (20)

The binary interaction parameters of the models were determined using the modified
Marquardt optimization technique which incorporates principles of the Monte Carlo
method, by minimizing the following objective function:

2
1 (VE —VE
OF = — 2P ) s min, 21
m;< Véo i @

where m stands for the number of experimental data points.

The correlating results of V'® were assessed by the percentage average absolute
deviation PD(V'F) defined as

1 m I/E _ L/F
PD(V'E) = EZ _exp Tl (22)

m &%)
max |;

where (VE ),..x denotes the maximum value of experimental VE,

Xp

5. Results and discussion

Correlation of V¥ data for the binary systems of dicyclic ethers, listed in table 1 was
performed by the CEOS and CEOS/G " models. Table 4 presents the results of the
correlation at 298.15K. Results of the correlation in entire temperature range
are presented in tables 6 (for the models with temperature independent param-
eters) and in table 8 (for the models with temperature dependent parameters).
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Table 3. Coefficients optimized at 298.15K with the vdW1, MvdW1, GRF1, and GRF2 mixing rules.

GRF2
vdW1 MvdW1 GRF1* 3

c ¢ ¢3 (Jmol ™) ¢ (Jmol™")

System no. Cs c3 ¢s (Jmol™h) cs (J mol’l)
9 0.162613E—1 0.460393E—1 0.569537E+5 0.292204E+0
—0.409048E—2 —0.499089E—2 0.275561E+4 0.590245E+5
0.274552E+4
10 0.119640E—1 0.581766E—1 0.530866E+5 0.240172E+0
—0.596683E—2 —0.118006E—1 0.289903E+4 0.715751E+5
0.282474E+4
11 0.117344E—1 0.638712E—1 0.490815E+5 0.220478E+0
—0.636964E—2 —0.168048E—1 0.447216E+4 0.770517E+5
0.419977E+4
12 0.134540E—1 0.675962E—1 0.527508E+5 0.230433E+0
—0.579510E—2 —0.244950E—1 0.203876E+4 0.735350E+5
0.199964E+4
13 —0.818887E—2 0.386163E—1 0.560009E+5 0.754231E+0
—0.478930E—2 —0.212791E—1 0.692172E+3 0.182065E+5
0.725538E+3
14 0.657831E—3 0.652326E—1 —0.447820E+3 0.681225E+0
—0.585411E—2 —0.367252E—1 0.298674E+4 0.203796E+5
0.285157E+4
15 —0.154043E—1 0.181498E—1 —0.276978E+4 0.775570E+0
—0.,292960E—2 —0.187566E—1 0.408601E+4 —0.140253E+4
0.248362E+4
16 —0.834782E—2 0.452103E—1 —0.457472E+3 0.101734E+1
—0.760712E—2 —0.151907E—1 0.335937E+4 0.107210E+4
0.263786E+4
17 —0.723124E-2 0.528111E—1 —0.545723E+3 0.829163E+0
—0.792876E—2 —0.220381E—1 0.315531E+4 0.106438E+4
0.286670E+4
18 —0.961700E—2 0.557930E—1 —0.261640E+3 0.619030E+0
—0.807564E—2 —0.276651E—1 0.429252E+4 0.934157E+3
0.360220E+4
19 —0.119694E—1 0.542766E—1 —0.193262E+4 0.196579E+0
—0.703734E-2 —0.360441E—1 0.484135E+4 —0.360929E+4
0.639207E+4
20 —0.338188E—1 0.190890E—1 —0.381165E+4 0.615995E—1
—0.534147E-2 —0.289288E—1 0.728898E+4 —0.123253E+5
0.176126E+5
21 —0.245534E—1 0.494410E—1 —0.138927E+4 0.861558E—1
—0.654409E—2 —0.483592E—1 0.750461 E+4 —0.954972E+4
0.159128E+5
22 —0.538582E—1 —0.134781E—1 0.337361E+4 0.260226E—2
—0.340262E—2 —0.257662E—1 —0.431905E+4 —0.138650E+6
0.159925E+6
23 0.102368E+0 0.112064E+0 0.420000E+4 0.471494E+0
—0.177572E-2 —0.228809E—2 0.272072E+4 0.520585E+4
0.388979E+4
24 0.690013E—1 0.937171E—1 0.212627E+4 0.606225E+0
—0.468631E—2 —0.224996E—1 0.312730E+4 0.357139E+4
0.404710E+4

%5 = 0.30, for GRF1 mixing rule.

Corresponding coefficients of the models are listed in table 3 (for the correlation at
298.15K), table 5 (for the correlation in the temperature range using the models with
temperature independent parameters), and table 7 (for the correlation in the
temperature range using the models with temperature dependent parameters).
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Table 4. Results of V'E correlation at 298.15K with the vdW1, MvdW1, GRF1, and GRF2 mixing rules.

System no. vdW1 PD(V'F) MvdW1 PD(V'®) GRF1 PD(V'F) GRF2 PD(V'F)
9 1.99 2.34 0.98 0.92
10 1.43 1.95 0.94 0.66
11 1.83 2.38 1.65 1.01
12 0.92 1.57 0.86 0.77
13 1.43 1.90 1.14 1.00
14 1.23 1.97 1.34 0.80
15 1.22 1.56 1.08 1.00
16 2.42 3.18 2.14 1.09
17 2.01 2.75 1.82 1.40
18 1.27 2.06 1.04 0.71
19 1.41 2.34 1.04 1.05
20 2.07 2.58 1.55 1.40
21 2.65 3.51 2.23 2.18
22 1.82 2.21 2.95 1.02
23 2.30 2.47 1.94 0.35
24 6.09 2.62 2.26 0.57

For correlation at only one temperature the interaction parameters of the models
can be treated as temperature independent, since the results presented in our previous
paper [1] showed that in almost all cases the inclusion of the temperature dependence of
parameters does not improve significantly the results of the V'® correlation. On the
other hand the correlation in the temperature range demands a changing of the model.

From the table 4 it can be concluded that for the presented systems a considerable
influence of the type of the correlation model exist. The GRF2 model gave the best
agreement with experimental data, especially for the systems of dicyclic ethers with
cyclohexane. Also, it is noticeable that almost all errors obtained for the systems of the
1,3-dioxolane with 1-alcohols, are higher then those obtained for the 1,4-dioxane and
l-alcohol systems. Very good results achieved with the GRF2 model indicate that it is
not necessary to include more complex models for this type of correlation.

Figure 1(a) presents the results of V'F correlation obtained with the MvdW1
and GRF2 models for the system 1,3-dioxolane 4+ 1-nonanol. Figure 1(b) shows the
(VE/x1x2)—x, relationship. As we emphasized in the first part [1], this kind of a
graphical presentation is very illustrative, especially for high dilution regions. Also, the
shape (non-linearity or dominant maximum or minimum) or strong slope could causes
possible difficulties in the correlation with simple models. On this base, it can be noticed
the inability of the MvdW1 model to follow the non-symmetric behavior of the
(V E/x1x2)—x relationship, in spite of the fact that difference in deviations obtained with
the MvdW1 and GRF1 models is not so large.

Table 6 illustrates that results reached with the TCBT models are much better than
those obtained with the other models. In our previous paper was shown that for
V'E correlation in temperature range, use of the temperature dependent parameters for
the GRF and vdW models was necessary. For the data available in temperature range,
we compared results obtained using models with temperature independent parameters
(table 6) and models with temperature dependent parameters (table 8). Comparison of
the results achieved by the TCBT2 and GRF3 models, resented in tables 6 and 8,
respectively, led to the conclusion that all errors are very similar and it is acceptable to
use the TCBT2 model, as model with less parameters. Although the TCBT3 model gave
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Table 5. Coefficients optimized in temperature range 288.15—308.15K with the vdW1, MvdW1, GRF1,
GRF2, TCBTI1, and TCBT2 mixing rules.

TCBT2
TCBTI1* e
GRF2 e (Imol™) ¢ (Jmol™)
vdW1 MvdW1 GRF1* ¢ cs mol™) ¢ (Jmol™h)
¢ 2 s (Imol™)  ¢3 Jmol™) ky ky
System no. Cs 3 ¢s (Jmol ™) ¢s (Jmol ™) m;; my
1 0.354978E—1  0.428206E—1  0.352506E+4 —0.146053E+0  0.440582E+3 —0.229084E+0

—0.131322E-2 —0.108212E—1  0.987283E+3 —0.104439E+5 —0.238040E+3  0.302385E+3
0.882905E+4 —0.396724E—1 —0.166711E+3

0.187485E+0 —0.414222E—1

0.176383E+0

2 —0.514433E—1 0.208527E—1  0.256645E+4 —0.990287E—1 —0.233139E+4+4 —0.122632E+0
—0.104634E—1 —0.147455E—1  0.783137E+3 —0.110998E+5  0.299692E+4 —0.252422E+4
0.973895E+4 —0.673848E—1  0.214759E+4

—0.158262E4+0 —0.439212E—1

0.202312E+0

3 —0.830098E—1 —0.323777E—4  0.557236E+5 —0.178238E—1 —0.201922E+4+4 —0.538739E+0
—0.106448E—1 —0.174228E—1  0.223395E+4  0.246238E+5 0.248195E+4 —0.188550E+4
—0.273426E+5 —0.652582E—1  0.723166E+3

—0.166951E4+0 —0.580640E—1

0.185839E+0

4 —0.930111E—~1 —0.225814E—1 —0.941315E+3 —0.887069E—~2 —0.513919E+3 —0.181911E+0
—0.818811E-2 —0.179312E—1  0.254814E+4 —0.443597E+5 0.444440E+3 —0.396091E+4
0.392881E+5 —0.693653E—1  0.248834E+4

—0.252818E+0 —0.571664E—1

0.161379E+0

5 —0.216974E—1  0.306345E—2 —0.176608E+3  0.287848E+4+0  0.865975E+5 —0.252693E+4-0
—0.405209E—-2 —0.256520E—1  0.244459E+4 —0.227050E+3  0.234177E+3 —0.219171E+4
0.249662E+4 —0.456736E—1  0.207129E+4

—0.842309E—2 —0.346295E—1

0.119879E+0

6 —0.111044E+0 —0.201555E—1 —0.221547E+4 0.474980E+0 0.612097E4+4  0.413008E+0
—0.128237E—1 —0.300424E—1  0.494478E+4 —0.130874E+4 —0.655781E+4  0.473278E+4
0.377691E+4 —0.181289E+0 —0.492707E+4

0.950212E—1 —0.152340E+0

0.398463E—1

7 —0.135544E+0 —0.445142E—1 —0.357616E+4 —0.145447E+0 —0.115898E+44 —0.584457E+0
—0.115478E—1 —0.299351E—1  0.738127E+4 —0.115743E+5 0.139309E+4 —0.201477E+4
0.663339E+4 —0.632366E—1 0.101488E+4

—0.230923E4+0 —0.573939E—1

0.116928E—1

8 —0.133589E+0 —0.701548E—1 —0.450422E+4 —0.323499E+0 —0.231559E43 —0.215187E+0
—0.722607E—-2 —0.247650E—1  0.961030E+4 —0.741905E+4  0.238964E+3 —0.398022E+4
0.271041E+4 —0.672006E—1  0.247352E+4

—0.279807E+0 —0.585289E—1

0.403545E—1

“a1, = 0.30, for GRF1 and TCBT1 mixing rules.

the best results, only for the system 1,3-dioxolane 4 octane it is necessary to use the
most complex form of the TCBT model. In the case of the vdW models, results
obtained with the MvdW1-1 model are better comparing with those obtained using the
vdW1-1 model.

On the basis of all above mentioned results, the correlation of VE data in a
temperature range for the systems with dicyclic ethers can be successfully carried out
by the TCBT2 model with five optimized parameters.
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Table 6. Results of V' E correlation in temperature range 288.15-308.15 K with the vdW1, MvdW 1, GRFI1,
GRF2, TCBTI1, and TCBT2 mixing rules.

vdW1 MvdW1 GRF1 GRF2 TCBTI TCBT2
System no. PD(V'E) PD(V'E) PD(V'E) PD(V'E) PD(V' ) PD(V'F)
1 4.79 2.80 4.30 281 0.57 0.50
2 3.87 2.62 3.63 2.50 0.93 0.54
3 221 2.49 3.06 1.93 1.21 0.47
4 1.45 2.06 2.26 1.47 1.17 0.44
5 8.53 1.64 1.92 1.92 1.56 1.56
6 6.62 222 2.11 2.07 1.60 1.40
7 3.44 1.72 3.10 2.28 1.68 1.42
8 3.04 2.15 4.29 2.53 2.38 1.97
Table 7. Coefficients optimized in temperature range 288.15-308.15 K with the vdW1-1, MvdW1-1,
GRF3, and TCBT3 mixing rules.
TCBT3
1
GRF3 e (K™Y
c ¢ (Jmol™)
vdW1-1 MvdW1-1 e (K7h ¢4 Jmol 'K ™h
3 c ¢5 (Jmol™") ¢s (Jmol™")
e (K™Y 6 (K™Y ¢4 (Jmol 'K ¢ (Jmol 'K
Cs C3 Cs (J molfl) i
System no. e (K™H ey (KTH ¢ (Jmol 'K ny;
1 0.336221E40 0.108439E+4-0 —0.118404E+1 —0.682034E—2
—0.851580E—3 —0.219627E—3 0.622311E—2 0.370435E—2
0.255389E—1 —0.628879E—1 0.321501E+4 0.200078E+4
—0.639362E—4 0.174458E—3 0.340434E+1 —0.721705E+0
0.542100E-+4 0.143621E+4
—0.104136E+2 —0.318523E+1
—0.139544E—1
0.445590E—2
2 —0.909388E—1 0.107996E+4-0 —0.970327E+0 —0.740366E+0
—0.202047E—3 —0.290105E—3 0.630758E—2 0.648331E—3
0.175943E—1 —0.256837E—1 0.152995E+5 —0.435892E+5
—0.138727E—3 0.375717E—4 —0.396954E+2 —0.216332E+1
0.111377E45 0.308113E+3
—0.299927E+2 —0.118911E+1
—0.414892E—1
0.227936E+4-0
3 —0.277176E40 0.931727E—1 0.225088E—1 0.311794E+0
0.528986E—3 —0.311624E—3 0.122575E—2 —0.286515E—2
—0.165552E—1 —0.592575E—1 —0.112931E+5 —0.561950E+4
0.492777E—5 0.139783E—3 0.159183E+3 0.669354E+1
0.897012E+4 0.998467E+4-2
—0.225689E+4-2 —0.712994E+4-0
—0.959606E—1
0.219370E+40
4 —0.310170E40 0.818032E—1 —0.936000E—1 —0.414411E-2
0.706748E—3 —0.348889E—3 0.492444E—2 0.712233E—3
—0.273740E—1 —0.101210E+0 —0.322313E45 0.124471E+4
0.620271E—4 0.278124E—3 0.135927E+3 —0.476533E+1

0.158002E+5
—0.466705E+42

0.730947E+5
0.204753E+43
—0.424907E—-1
0.230566E+4-0

(Continued )
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Table 7. Continued.

TCBT3
1
GRF3 e (K™Y
¢ ¢ (Jmol™)
vdW1-1 MvdW1-1 e (K™Y ¢4 Jmol 'K ™h
¢ ¢ ¢ (Jmol™") ¢s (Jmol ™)

e (K7h 6 (Kh ¢4 Jmol 'K ™h ¢e Jmol 'K ™1

Cs C3 Cs (J molfl) i

System no. ¢ (K™H ey (KTH ¢ (Jmol 'K ny;
5 —0.107938E+1 —0.106500E—1 0.103337E+0 —0.235138E40
0.300107E—2 0.459117E—4 0.961541E—3 0.402235E—3
—0.955829E—1 —0.663351E—1 0.152998E+7 —0.841455E+4
0.223933E—3 0.135964E—3 —0.480635E+4 0.110826E+2
0.539104E+4 0.380513E+4
—0.103559E+4-2 0.605436E+0
—0.644611E—1
—0.115812E40
6 —0.106796E+1 —0.475623E—1 0.226952E4-0 0.258924E+1
0.280032E—2 0.917729E—4 —0.595875E—3 —0.123057E—1
—0.696397E—1 —0.240841E40 —0.203112E+4 —0.324402E+5
0.137247E-3 0.704636E—3 —0.313275E+2 0.518787E+2
0.248126E+5 0.493029E+4
—0.285952E+4-2 —0.103236E+4-2
0.358214E—1
0.287219E+0
7 —0.429944E+0 —0.181020E—1 0.121503E+0 0.655731E+0
0.875152E—3 —0.881738E—4 —0.197467E—3 —0.375524E—2
—0.188905E—1 —0.115336E+0 —0.459054E+4 —0.125152E+6
0.113778E—4 0.285362E—3 —0.262703E+2 0.259373E+3
0.237645E+5 0.111329E+5
—0.170092E+4-2 —0.209364E+42
0.155720E+40
0.37958 1 E+0
8 —0.854983E40 —0.539832E—1 —0.388261E+0 —0.121724E+40
0.236874E—2 —0.537033E—4 0.717435E—3 —0.190662E—3
—0.708168E—1 —0.250976E+0 —0.360274E+5 0.165260E+5
0.208094E—3 0.755146E—3 0.855948E4-2 —0.637182E+42

0.503503E+4
—0.189812E+0

0.117858E+5
0.303450E+1
0.386283E+0
0.629521E+0

Figure 2(a) and 2(b) presents the correlation of VF data for the system 1,4-

dioxane + heptane at 298.15 K with the model parameters generated in the temperature
range 298.15-308.15K. Applying the TCBT1 model a very good performance was
obtained, while the GRF1 and GRF2 models show mutually very similar behavior,
characterized by their inability to follow the tendency of experimental data point
(figure 2b) specially at the ends of the concentration range.

Results of V' E correlation with the GRF1, GRF2, and TCBT2 models for the system
1,4-dioxane-nonane at 288.15 K are illustrated in figure 3(a) and 3(b). The GRF1 and
GRF2 models work inadequately, unable to follow the non-linear variation of V' */x,x,
with composition.

Figure 4(a) and 4(b) shows the fit of the V'F data obtained with the GRF1, GRF3,
and TCBT3 models for the system 1,3-dioxolane+ decane at 308.15K. For this
system an asymmetric shape of the (V' ¥/x;x,)—x, curve is satisfactorily followed with the
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Figure 1. Correlation of 'F data at 298.15K for the system 1,3-dioxolane +nonanol [14] in: (a) V'E—x,
(b) VE/(x1 x2)—x; diagrams. The symbols are experimental data. The lines present the results calculated by the
various models.

Table 8. Results of V'F correlation in temperature range 288.15-308.15 K with the vdW1-1, MvdW1-1,
GRF3, and TCBT3 mixing rules.

vdW1-1 MvdW1-1 GRF3 TCBT3
System no. PD(V'®) PD(V'®) PD(V'®) PD(V'E)
1 4.12 2.24 0.36 0.34
2 3.03 1.97 0.44 0.45
3 1.53 1.72 0.89 0.40
4 1.33 1.54 0.52 0.40
5 7.47 1.51 1.38 1.33
6 242 1.46 1.23 0.90
7 1.72 1.68 1.46 1.14
8 1.88 1.97 2.17 1.73

TCBT3 model. On the other hand the very non-linear (¥ */x,x,)—x; dependence for this
system caused higher deviations obtained with the GRF1 (4.29%) and GRF3 (2.17%)
models. Results of V'F correlation by all CEOS and CEOS/G* models for the 1,4-
dioxane + nonane system in temperature range is presented in figure 5. This type of
graphical representation of deviation depending on the number of optimization coeffi-
cients used is very illustrative confirming the necessity of making use the TCBT model.

6. Conclusion

Results of correlation of the isothermal excess molar volume (¥ F) data, using the cubic
equation of state mixing rules for the systems of dicyclic ethers, with alcohol and
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Figure 2. Correlation of I'F data at 298.15K with the parameters of the models generated in temperature
range 288.15-308.15 K, for the system 1,4-dioxane + heptane [11] in: (a) VE —x; (b) (VE/x1x2)—x, diagrams.
The symbols are experimental data. The lines present the result calculated by the various models.
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Figure 3. Correlation of V'* data at 288.15 K with the parameters of the models generated in temperature
range 288.15-308.15 K, for the system 1,4-dioxane 4+ nonane [11] in: (a) V¥ —x; (b) (VF/x1x,)—x, diagrams.
The symbols are experimental data. The lines present the results calculated by the various models.
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Figure 4. Correlation of V'* data at 308.15 K with the parameters of the models generated in temperature
range 288.15-308.15 K, for the system 1,3-dioxolane + decane [12] in: (a) V'E — x; (b) (V/x;x2)—x; diagrams.
The symbols are experimental data. The lines present the results calculated by the various models.
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Figure 5. Comparison of the results of V'® data correlation using CEOS and CEOS/G* models, with
the parameters of the models generated in temperature range 288.15-308.15K, for the system
1,4-dioxane + nonane [11].

cyclohexane, confirmed that use of the temperature dependent parameters of the cubic
equation of state (CEOS) models was not necessary. The obtained results indicate
that V'® correlation at only one isotherm can be successfully performed using the
GRF models with no temperature dependent parameters of the NRTL equation.
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For the correlation of the dicyclic ethers with alkanes in the temperature range, it was
shown that use of the new TCBT model with no temperature dependent parameters
are adequate. Alternatively, the GRF mixing rule with all temperature dependent
parameters works satisfactorily.
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